If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2=900
We move all terms to the left:
2a^2-(900)=0
a = 2; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·2·(-900)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*2}=\frac{0-60\sqrt{2}}{4} =-\frac{60\sqrt{2}}{4} =-15\sqrt{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*2}=\frac{0+60\sqrt{2}}{4} =\frac{60\sqrt{2}}{4} =15\sqrt{2} $
| x^2=180(x-2) | | 2-2x=-2(x1) | | x²+10x+360=0 | | x=2x+4x+8x=45 | | 3-2x(2x+5)=-20 | | j+28=80 | | -(x-8)=-3(x=13)+5 | | 7y-5=31 | | 2x+-4=7 | | v+21=96 | | 2x+-4x=7 | | 48=y+36 | | y+20=65 | | 2(x+5)=3(2x–6) | | 78+5j=234-131 | | 95=h+20 | | 3x^2+8x+80=0 | | (1/2x)=(1/2x) | | s+7=73 | | q/15+13=16 | | 33=j-41 | | H=-16t^2+59t+6 | | 49=14+3x-36 | | 2(y-13)=-2 | | 3x-6=8x+6 | | 2=b-28 | | (3x+21)=(4x+11) | | 6.2x+7.2=90 | | w-10=7 | | j+4=19 | | 7.3x+9.5=180 | | u/4+12=13 |